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Abstract— For an EM plane wave coupling with a 

horizontal conductor above ground, the induced current 

reaches a maximum for small incidence angles. A 

transmission line analysis shows that this is due to in-phase 

adding of excited waves along the line. 
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I. INTRODUCTION 

This study supports the threat evaluation for EMP impact 

on power lines and connected components. The current 

induced by a plane wave incident on a horizontal line 

above a lossy ground is computed as a function of the 

incidence angle , as in Fig. 1 (case of zero incidence 

azimuthal angle, that yields the largest current). Solutions 

from both fully EM analysis, and from transmission line 

theory are well known (e.g. [1], [2], respectively).  
 

 
Figure 1.  Incident wave on line above ground 

 

II. INDUCED CURRENT ON THE LINE 

Following [2], the impact on the infinite line from the 

external field (incident wave plus ground reflection) can be 

represented by a distributed set of voltage sources (Fig. 1). 

In the conventional phasor notation, for a single lumped 

voltage source Vs in z=zs, the current on an infinite line 

above ground is [2] 
 

𝐼𝑙𝑖𝑛𝑒(𝑧) =
  

𝑉𝑠(𝑧𝑠)

2𝑍𝑐
ⅇ−𝑗𝛾(𝑧−𝑧𝑠), 𝑧 ≥ 𝑧𝑠

𝑉𝑠(𝑧𝑠)

2𝑍𝑐
ⅇ𝑗𝛾(𝑧−𝑧𝑠), 𝑧 ≤ 𝑧𝑠

≜ 𝑉𝑠(𝑧𝑠)𝛼(𝑧, 𝑧𝑠)         (1) 

where  and Zc are, respectively, the propagation constant 

and characteristic impedance. A distributed voltage source 

can be considered as the equivalent to a harmonic incident 

wave of amplitude E0. This leads to a field component 

Ec(z) on the conductor expressed as (with e-jt
 suppressed) 

 

𝐸𝑐(𝑧) = 𝐸0 sin(𝜓) (ⅇ𝑗ℎ sin(𝜓)𝑘0 − 𝑅𝑣ⅇ−𝑗ℎ sin(𝜓)𝑘0)ⅇ−𝑗𝑧 cos(𝜓)𝑘0  
 

where k0=c and Rv is the ground reflection coefficient. 

Thus, if Vs(zs) in (1) is replaced by a source distribution 

dVs(zs)=Ec(zs)dz, the line current can be written as 
 

𝐼𝑙𝑖𝑛𝑒(𝑧) = ∫
𝑒𝑗𝛾(𝑧−𝑧𝑠)

2𝑍𝑐
𝐸𝑐(𝑧𝑠)𝑑𝑧𝑠

𝑧

−∞
+ ∫

𝑒−𝑗𝛾(𝑧−𝑧𝑠)

2𝑍𝑐
𝐸𝑐(𝑧𝑠)𝑑𝑧𝑠

∞

𝑧
         (3)  
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III. CURRENT VS. INCIDENCE ANGLE 

Approximations of the integral in (3) with finite line length 

L, and then through series representing a discrete source 

distribution are then considered as  
 

𝐼𝑙𝑖𝑛𝑒(𝑧) ≅ ∫ 𝛼(𝑧, 𝑧𝑠)𝐸𝑐(𝑧𝑠)𝑑𝑧𝑠
𝐿

−𝐿
≅ ∑ 𝛼(𝑧, n∆)𝐸𝑐(n∆)∆𝑁

𝑛=−𝑁     (4) 
 

where =L/N, and then zs=n and  was defined in (1). 

    The L=∞ line current in (3) is computed analytically and 

plotted in Fig. 2 vs. the angle , with the same open-

termination geometry and lossy ground as in [1]. As in [1] 

(that uses a different normalization and a fully EM model), 

the peak occurs at max ≈ 6.7º. Fig. 2 shows also a good 

agreement with the responses in (4), for both a finite L, (of 

several wavelengths at 500 kHz as in [1]), and with the 

series approximation with N=50.  
 

 
Figure 2. Line current amplitude vs. incidence angle  

 

To study the peaked response, (4) is re-written in terms of 

the current contributions I: 𝐼𝑙𝑖𝑛𝑒(𝑧) ≅ ∑ ∆𝐼(𝑧, n∆).𝑁
𝑛=−𝑁   

    In Fig. 3, the real part of the phasor I is plotted vs. z, in 

the vicinity of z=0, for five zs=n sources. This shows 

how the peak of Fig. 2 is formed: at =max the current 

contributions add closer in phase (thus leading to an 

overall larger current), while for =2.5max there is a larger 

spread leading to partial cancellations of the contributions.  
 

 
Figure 3. Current waveform spread at =max vs. larger  

 

This was verified for other angles and locations of the 

sources. Also, for larger frequencies the peak in Fig. 2 has 

a lower amplitude, and shifts to slightly lower angles.  
 

IV. CONCLUSIONS 

The peaking of the wave-line coupling at small incidence 

angles is due to a selective superposition of the traveling 

waves induced on the line. The finite length line analysis 

that was presented is also effective to study realistic, short-

duration pulses.  
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